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ANALYSIS OF CONTROLLED ROTATIONS OF AN ELASTIC ROD AROUND AN ARBITRARY AXIS" 

L.D. AKULENKO and S.A. MIKHAILOV 

Controlled plane rotations around an arbitrary axis under the 
action of concentrated (transverse) forces and the moments of forces 
/2, 3/ are investigated for a homogeneous rectilinear rod within the 
framework of the linear theory of small strains /l/. To be specific, 
we consider the case when the moments are applied relative to the ends 
of the rod and the axis of rotation while forces orthogonal to the rod 
are also concentrated at the ends. A complete solution of the Cauchy 
problem (in time) is constructed by analytic methods of mathematical 
physics /4/ and the approach in /5/ for a system described by the 
boundary value problem, and a foundation is given /6, 7/ and 
controllability is established /a/. Problems of applied interest are 
examined in the cases of realizations of the "kinematic" and "dynamic" 
controls of rod rotations and estimates of the errors due to its 
elasticity are also examined. The results can be utilized in 
investigations of problems of precision control of mechanical objects 
possessing substantial compliance of the structure. 

1. MechanicaL model and formulation of the probtem. Plane rotations of an inex- 
tensible elastic rod around an axis 0% fixed in inertial OXYi! space and passing through an 
arbitrary fixed point 0 of a rod .4B are considered (Fig.1). It is assumed that the rod is 
recilinear in the undeformed state while its characteristics, the length 1, the linear 
density pq and the bending stiffness El, where E is the young's modulus of the material 
and I is the moment of inertia of the transverse section, are constants. The rod AB is 
subjected to the action of external concentrated forces PA? Pn (at the moving points A, H) 
and moments of the forces _M,, M.4, MB (relative to the fixed axis 0% and the moving axes 
AZ, BZ orthogonal to the OXY plane) (Fig.1). The elastic displacements are assumed to 
be small, allowing investigation in a linear approximation /l/. Under these conditions only 
normal force components to the rod IJ.4 and PI, should be taken into account. 

On the basis of the assumptions mentioned, that are often used in practice,the equations 
of absolute motion of an elastic rod AB in the OXY plane can be represented in the form 
/l/ 

PU : -hIu’“, u = u (t, x) (1.1) 

11 (t, s) = 
I 

U,(t,I), zcz[--601 

U*(t,g, ZE[O,bl 

t E IO, 77, T < co; z E I-u, bl, a + b = 1 

The desired unknown function u (t, 2) governing the total displacement of an arbitrary 
point GEAB whose coordinate is I, can be interpreted as the sum of two quantities 

u (t, x) = cp (t) z + v (t, x) (1.2) 

Here rp = q(t) is the unknown angle between the fixed OX axis and the rotating 
coupled axis Ox, i.e., cpx is the length of the appropriate arc (Fig.1). It is assumed 
for convenience in the investigation that the OX axis coincides with the tangent to the 
rod AB at the point OEAB (x = 0). The unknown variable u(t,s) has the meaning of 
small relative elastic displacements of the point GEAB of the rod with Euler coordinate 
I, I E [-a, bl. 

The boundary conditions at the points A, 0, B (for 5= -a, 0, b, respectively) 
have the following natural form 

11, (t, 0) = u* (t, 0) = 0, u,' (t, 0) = Ub' (t, 0) (1.3) 

--EZu," (t, -a) = MA (L), -EZu,,” (t, b) = Mu (t) 
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-EIu,“’ (t, -a) = PA (t), -EIub’” (t, b) = Pw (t) 

-EI [ub” (t, 0) - ud (t, 0)l = M, (4 W) 

The first three conditions in (1.3) have a geometxical meaning while the remaining five 
conditions of (1.4) (of eight relationships) describe the influence of the concentrated 
external forces and moments of forces as mentioned above. 

Fig.1 

The external actions Mo,A,B- PA,B are considered to be given fairly smooth functions 
of the time, i.e., to belong to a certain class of allowable functions determined later; 
their realization is by ideal modes. We note that if the solution u(t, 5) of the boundary 
value problem (l.l), (1.3) and (1.4) corresponding to the allowable initial conditions is 
found, then according to (1.2) the variables q(t) and v 0, 5) are determined uniguely in 
the following manner /2/: 

rp 0) = n' (t, O), v,(t, 5) = u (t, s) - u’ (1, 0) 2 (1.5) 

The initial conditions have a general form and according to (1.3) satisfy the conjugate 
conditions 

Here f (4 = fa.a (4, g(x) = ga,b(x) are known fairly smooth functions that should 
almost linear according to (1.5). 

The boundary value problem (l.l), (1.3) and (1.4) must be solved under the given 

u (0, 4 = f (4, u’ (0, 5) = g (z), x E [-a, bl 

f (4 = fa (2% g (4 = ga (4, 2 fz l-4 01 

f(d=fb(d, g(d=gJ,k), xfz[O, bl 

f (0) = f, (0) = fb (0) = 0, fd (0) = fb’ (0) 

g (O) = gcz (O) = gb (0) = O, ga’ (O) = gbt (0) 

(1.6) 

be 

allowable 
external actions (1.4) and initial distributions (1.6) for arbitrary values of the parameter 
a (n E [O, n, a + b = 2). 

Without loss of generality it is later possible to set E=p=EI=i, which is 
achieved by inserting dimensionless arguments and variables according to the formulas 

t* = vt, va = EI I (pP), x* = xll, u* = ull 

MB, A.B = Mb, A, BI~PPv’), 4, w = Pa.~l@~~v~) 

f* (a+) = f (W)JZ, g* (I*) = g (lx*)/(lv), a* = ail, b* = b/l 

(1.7) 

For brevity, the asterisk is henceforth omitted. 

2. Sotution of the eigenvatue and eigenfunction boundury value probtm. 
The Fourier method /4/ and Grinberg's procedure /!i/ are used to construct the desired 

solution 11 (L 5) by analogy with /2, 3/. First, systems of eigenvalues and eigenfunctions 
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are constructed by separation of variables for the appropriate spatial variable J: of the self- 
adjoint boundary value problem 

We can simplify the finding and writing of the system of real eigenvalues W and 
eigenfunctions {S,,b(r)) if new spatial arguments x02,, % are introduced in the appropriate 
ranges of their variation as follows ,r, :- a + .r, x, E JO, al; s,, -: h - J, Xb E JO, bl; then 

S, (z) =T S, (.r= - a) E Q, (x,), S, (2) = Sb (b - X~)E Qb (x6). According to (2.1) 

Oa, b (&, b) I= &, 6 cm ~%, 6 + &%, 6 Siri h&, 6 +- (2.2) 

ca, b Ch hXo_ b i- DC,, 6 sh hz, 6; A,, 6 -== (.‘a* br &,, b : ‘- &. b 

The four relationships (2.2) between the constant coefficients &,b and c &,b a,bt 

and &,b follow from the zero conditions (2.1) at: the ends of the rod, i.e., for &,b -.- 0. 
The four conditions of (2.1) for x := 0, i.e., x, = a,x, =: b, are utilized to determine 
A and Da.b. 
be%een D 

It is convenient to reduce these conditions to the following relationships 
a and Db by elementary manipulations: 

D, [g(a) - s(a) r (a)icl @)I == --L)b 19 (6) -s (6) r(B)@ (NJ 

D,Ir (a) - p (a) s (a)/~$ (a)] = Db fr 6% - P @)s@)/(l@)1 
A, :=- -D,s(a)!q (a), A, s-= -Dw~(fi)/q @) 

p (S) = ChS - cos E, q(g) = ch E + cos E > 2 

r (5) .= sh E - sin 5, s(E) = sh 5 i_ sin E 

$-lZVJ3; a = la, 6 =hb 

(2.3) 

We obtain a characteristic equation determining the eigenvalues h = h(a, b): from the 
first two equations in D, and D, 

A (a, ,i;(p! W (a) - s (o)r (a)J Jr IB)q (6) - P 03 s @)I i- 
- s (S) t- @)1 Ir 64 P (4 - P C-4 s (NJ = 0 

{h} = {h, (a, b)}, n =: 0, &I, +2, . . ., ho 3 0 (2.4) 

The function i\(a,6) in (2.4) is an odd function of h. relative to h =O; consequently 
a, = 0 and it can later be considered that L, = --h,(n = 0,1,2,...), where h,, are non- 
nebative roots of the characteristic equation. The zeroth root X, = 0 is multiple, however, 
only the first eigenfunction St, (s) = 2 corresponds to it. The non-zero eigenvalues h, 
are simple and symmetric relative to commutation of the arguments a and b L @, b) = k,, (b, 
a) (n 2 1, a + b = 1). Consequently, it is sufficient to construct functions )I% (a, b) , sol- 
utions of (2.4) in the interval a c JO, V,J, b = 1 - u (or b E JO, 'r/d, a = 1 - b). 

It should be noted that the eigenvalues h,f agree with the corresponding values of 
the boundary value problem for a rod, hinge supported at one end /2, 3/, for a = 0 (b = 1) 
or a = 1 (b = 0) (L (0, 1) = 1,, (1, 0)) as is obvious. 

Thus, we have the relationships 

tgh-thh (a=O, b=lVu=i, b=O) (2.5) 
A,f cz 3.927, k&'r 7.069, hf- 10.21, Ll~13.33, ii,'rl6,49 

hhl = ni4 + nn + Onf, 0,' - exp [-(Znn + n/2)1, n > 1 

The case s zzz A = 'Jp for which we obtain the characteristic equation and its solution 

(tg 'l,h. - th '/,h)(cos '/&ch V,h + I) I- 0 (a = b = VP) 

{A,} = {P&} lj {I$}, n’ = 0, 1,2, . . ., n” = 1,2,. . . 

h,Qr3.750, h,'N_9.388, h,"E 15.71, h$"c% 21.99, h,=228.27 

h$ = n + 2xn" f- O$, 0:. - exp(- 2nn"), n”> 1 

(2.6) 
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is also investigated fairly simply. 
The eigenvalues {h,~"} corresponding to symmetric rod vibrations modes 

first factor in (2.6)) are obtained on the basis of (2.5): ?Q = 2h,,l (0, 1). 
and the eigenvalues (h,,~*}, corresponding to the antisymmetric rod vibration 

(zeros of the 
These eigenvalues 

modes (zeros of 
the second factor in the left side of (2.6)) alternate in turns, as is natural. The first 
six eigenvalues &(a, 1 - a) (n = 0, i, . . ., 5) for a CE IO, "1J 

- a., a), h,, (0, I) = h, (f, 0) = &f. 
are presented in Fig.2; as 

was noted h, (a, 1 - a) = &, (1 
After the eigenvalues (numbers) h,, (a, b) have been determined, the eigenfunctions 

s3b (x) can be represented according to (2.2) and (2.3) in the form 

Fig.2 

To fix our ideas, we set I), = 1 in (2.7) and the coefficient 

& is taken from the first relationship in (2.3). Other 
equivalent representations are possible. The function Se (2) 
is the zeroth mode and corresponds to rod rotation without 
elastic displacements (as absolutely stiff: u(t, 1)=%01. 

It follows from (2.7) that the eigenfunctions S",,b (x) satisfy 
the boundary conditions (2.1) by construction, and moreover, 
Is," (r)s 0 for a=0 and S," (2) E 0 for b =O. The func- 
tions S, (x) (x E [-a, bl, n = 1, 2, . . .) are analytic in the 
segments zE[--a,O) and .z E (0, bJ and have continuous 
derivatives to second order inclusive at the point x = 0. We 

draw attention to the fact that it is sufficient to take the 
functions s, (z) (n = 0, 1, 2,. . .). 

The system of eigenfunctions {S,(5)) (2.7) for the self- 
adjoint boundary value problem (2.1) is orthogonal 
ordinary sense 14, 61 

in the 

b ‘I D b 

(S,, S,) = 5 S,(x) s, (x) dx = 5 S,“(x) sma (x) dx -I- s Snb (4 &” (4 dx = 
--o -a * 

II 4% II8 &a~ (n,m=O,l,2, . . .), 11 s, 11s = [ s:: (I) dx -+- i s:* (I) dx 
0 

(2.8) 

Indeed, we multiply relationship (2.1) for S=Si*"+ h=h, by s: b, we integrate 
with respect to x in the appropriate intervals of x variation and add. Integrating by 
parts and using the boundary conditions (2.1) for s::",, we obtain (2.8). , 

The norms US,! of the eigenfunctions s, (xf utilized in (2.8) to construct the 
orthonormalized system {%(x)f, depend symmetrically on the parameters a and b=i- a relative 
to (1 = 'I, and commutation of the arguments like &,(a, b). Consequently, it is sufficient to 
construct their graphs in the interval 4~ [O,VJ. An analytic represenation of the func- 
tion [S,[ from a,b=l--a is extremely awkward for n> 2, in particular 

i/s, 12 = v, (03 + by = (a~ - d $ “i,) > vi4 

Therefore, the desired systems of eigenvalues VW) and the orthonormalized functions 
{on (I)) for the boundary value problem (2.1) are constructed in conformity with (2.41, 
(2.7) and (2.8). For a = 0, '/%,I the system {u,,(x)} is a known complete orthonormalized 
system, i.e., the bases in the space L*[--a, bl. The completeness in the general case is 
proved on the basis of the theory of integral operators /6/. The properties of uniform 
convergence and differentiability of the Fourier series corresponding to narrower classes of 
functions are established in the same way as the Steklov theorem /7/ and are later used to 
solve the initial problem (1.11, (1.31, (1.4) and (1.6). 

3. SO&&Con of tite pPobZ@n of the DKltion of an elastic rod for given forces a& nmaents. 
The desired function a (& s) is constructed by the Fourier method 12, 4, 5, 71 on the 

basis of a complete orthonormalized system (basis) Q&I W. Grinberg's method /5/ used 
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below is the following. According to (1.1) (for I -. p -ICI :: 1) and (2.81, we obtain il 
denumerable system of equations for the unknown Fourier coefficients o,, (1) (ll - ci. I. . .,i 

of the function II (t, 2) in the basis {o,, (r)} 

on.. z - i LP'e," (5)& - i tr'%z,,"(.r) d.r, li = 0, f,', . . . (3.1) 
-0 ;; 

Integrating the expressions on the right in (3.1) by parts and using the boundary con- 
ditions (1.3) I (1.41, and (2.1) for ~,,~~(t,s) and o?* (x), we obtain a denumerable 
system of equations and initial values for the unknown variables 8, (G: 

8," -+ h,FJ,, == F,, Q), t G [O, T], n = 0, 1, 2, . * (3.2) 

F,(t)= o,"(h) PB(t)- O,"(- a)Pd.(t) $ 
n,'(O) M, (f) -f- 0""' (- a) M, (t) - O"b' (b) M,, (1) 

O,(O) -= C-1," EC5 /, f^i (/, Lx& O"'(0) =: 62," S gn -= (g, c?',) 

Here frill & are Fourier coefficients of the functions i(& g (-c) in (1.6) in the 

basis {a, (CC)). If the functions f?+,~(t), &?o,,,u (t) are given, as is indeed assumed, then 
we determine the desired 8, (Q> 87%‘ (0 in an elementary way: 

The expressions eO (t), 8,, (tf are obtained from (3.3) for II "= 0 by passing to the 

limit 0,--t 0. On the basis of the coefficients @VI 0) (3.3) obtained, the desired sol- 

ution u (1, r) of the problem formulated in Sect.1 is constructed as 

The dependence of the solution u (& x) (3.4) on the parameters of the problem a, 6 -= 1 - 
a is not indicated for brevity. We note that if the initial deviations and rates are 
vanishingly small while the dimensional frequencies are asymptotically large, the relationships 
(3.4) describe the rotation of an absolutely rigid rod 

24 (t, 5) 3. tp (t) z, u (t, x) 3 0, t E IO, TJ, 5 E I-a, b’l f3.5) 

cp ft) = ‘PO 4”- dt + I-“$ (a, b) f (t - z) F,(z) iiT 

J (a, b) = j/ S, /If = ‘I, (a3 i- b3) = ul-- a + V3, *it, < J < *j3 

F, tt) = I+* (a, 6) MI: (t), Mz = bPs + aPA -f- MO + MA - AIs 

The coefficient J (a, 6) in (3.5) has the meaning of a dimensionless moment of inertia 
of an absolutely rigid thin rod of unit length and density relative to the point x = a, a~=[0, 
11. 

All the modes of the partial elastic rod vibrations turn out, according to (3.2), to be 
coupled general external actions ‘A, B tt)y MO, A.B @) that can be considered as controls and 
are selected from the requisite properties of the motion. According to /8/, the &numerable 
system (3.2) is controlled in a finite time interval O,<tQ T<s.However, in contrast to a 
distributed control, the structural construction of a control by means of a finite number of 
control functions PA,a (Q, Mo as(t) causes difficulties in principle /2, 3, 9, lo/. 
so-called finite-mode approximation f3/ for which the coefficients 

The 

are taken into account is used as the basic practical approach. 
%O) (n = 0, 4, 2. . I ., Ga.J 

Appropriate controls are 
substituted into the initial system and their influence on the higher vibrations modes is 
estimated @>n,,,). 

The influence of perturbations or the technical realization of the controlling effects 

PA, s @tl* J@Q, A. a (0 can result in a direct connection between the variables, en (8 = 0, i, 2, . . .i. 
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For instance, the controlling moment of the forces Mo relative to 0.2 often has the form 

Mo = m (9, cp') + B (cp'. e (0)* in applications, where m is the moment of the resistance force, u 
is the electromagnetic moment, and e is the electrical voltage considered as the control of 
an electromechanical driver. Furthermore, the force effects P4.a can be realized by linear 
step motors in the form 

Practical requirements result in the need to develop approximate methods for solving 
problems of controlling motions and their optimization for systems with distributed 
parameters, i.e., possessing significant elastic complianceof the elements and structures. 

4. Estimates of eZastic disptacenents and acemy of positioning. 
For practical purposes it is usually interesting to formulate a problem of setting an 

elastic rod in a required angular position ((P(T)= @,cp’(T) = 0) or state of uniform rotation 

(cp' (T) = aT) without relative vibrations (u (T, x) = u’ (T, x) = 0). Since the exact solution 
is not constructed successfully, the rod will have residual elastic displacments. Evaluation 
of the quantity v(t, x) governing these deviations, enables different accuracy characteristics 
for control of the rod rotation to be estimated. To investigate such a problem it is con- 
venient to change to the variables ZJ (& & rp G). We consequently obtain a system of partial 
integrodifferential equations 

u” = _$V - xcp”, v = v (t, 2) = vo,* (t, x) 

27, (t, 0) = u,' (b, 0) = u, (t, 0) = 4' (t, 0) = 0 
(4.1) 

f- [Ud' (t, 0) - va" @, 0)l = AR0 (t)), t E IO, Tl 

4,” (t, -a) = MA (t), -v;’ (t, -a) = PA (t) 

-%” (t, b) = MB (t), -VT (t, b) = PiI (t) 

u (0, 2) = h (5) 3 f (I) - ‘pox, v.(O, t)=k(X)~g(z)-dJx 

.z E [---a, bl, h (0) = h’ (0) = k (0) = k’ (0) = 0 

J (a, b) cd’ i_ i v” (t, 5) xdx = Mr.@) 

cp (0) =-G, ip’ (0) = 69 w4 

Problem (4.1), (4.2) is equivalent to the original problem (l.l), (1.3), (1.4), (1.6). 
However, the kind of boundary value problems for v is different; the boundary conditions have 
changed. It can be solved by a method analogous to that mentioned in Sects.2 and 3. 

We note that any eight of the nine boundary conditions can be selected from the system 
written. Moreover, (4.2), which contains the integral of U" (t, 2) 2, is equivalent to 
the following by virtue of (4.1): 

- vbm (t, b) - v,” (t, - a) - [v,” (t, 0) - vd’(t, O)] - 

q,“(t, - a) + Q,” (t, b) = Mr: (t), t E [0, T] (4.3) 

Substitution of the boundary values according to (4.1) into (4.3) results in an identity, 
as might have been expected. If the function cp" = r(t) (a "kinematic" control) is given, 
then the relationship (4.3) is a condition on the force actions, which when satisfied results 
in realization of a given rotational motion of the tangent Ox (the "direct" dynamics 
problem). We note that the left side of (4.3) is a linear integral operator of Y,PA,B,M~,A,~. 
Furthermore, if the functions PA, B (f)l Mb, A. B @) are given, relation (4.3) is a linear 
Volterra-type integral equation with difference kernel of the first kind /ll/ with all the 
singularities of matching the smoothness and the order of zeros. It follows from the structure 
of the solution obtained by the Fourier method that the integral equation has the form 

f L (t - Z) y (T) & = H (t)% L (t) EZ t-&sin %t 
0 -1 n 

Here L,, are Fourier coefficients of the function l(x)=% in a basis generated by the 
boundary value problem (4.1); A,,, St, = &,” are the eigenvalues and frequencies, respectively. 
The function H(t) is defined in terms of the known PA,B (t), M@.A,B (t) and the Fourier 
coefficients of the functions h (x), k (5). We note that the kernel of the integral operator 
vanishes for t =?, which requires matching of the order of the zeros of the right side of 



11 (t) if the solution Y (t) is constructed in the class of continuous (not generalized1 

functions /ll/, as is dictated by the physical conditions of strength. 
A typical formulation of the("dynamic") control problem for system (4.1) and (4.2) is 

the selection of allowable controls (and optimal controls in a certain quality criterion) 

PA, n (t) and M~,A,N(~) setting the system for t:T 

or rest as a whole (without elastic displacements u(T, 

in the required state of rotation 
z) z I” (T, x) E 0). This state will 
to zero. 
rod for which u' (t, X) = 0, y (t) =: *;O r 
constant controlling actions I)A,B 
here. Integrating the static 

be conserved for t> T if the controls are set equal 
The state of the static deflection 1? = v'(x) of a 

const is of interest in practice. It is realized for 

and Mo,a,n, in particular y (t)EO, if Afs (t) E 0 
deflection equation we obtain 

(4.5) 

Conditions on the control for which L',:(X)= 0 (MA = P,, = y=O), but vhO(z)+O follow 
simply from (4.5) ; analogously u'bo(2)% 0 (if MB = Pn =y=O), but 1-'0 x 
rod remains straight if and only if all the functions I).&B (t) : = MO .I n (&L i,+ O. 

The whole 

The elementary expressions (4.5) are useful when T> T,, where T; 12n1Qr 
as is obvious. 
is the period 

of the lowest elastic vibrations mode. In the case of smooth, practically constant controls, 
the natural vibrations damp out and rod rotation will be described by the relationship (4.5). 

The orthonormalized eigenfunctions 0, (x) (3.2), (3.3) and the Fourier coefficients 

8" (t) constructed according to (2.7) and (2.8) and the eigenvalues I", (a, b) and frequencies 
0, = h,2 calculated from (2.4) (see (2.5), (2.6), and (3.3) also) permit the simple con- 
struction of rational control laws, the estimation of the accuracy of the motion being 
obtained in each specific case with respect to the required motion and the constructive 
selectionof the compositionof the controlling effects and the parameter a to improve the 
quality of the control process. 
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